Skip to content Skip to sidebar Skip to footer

Get Both The Top-n Values And The Names Of Columns They Occur In, Within Each Row In Dataframe

I have a dataframe like in this one: df = pd.DataFrame({'a':[1,2,1],'b':[4,6,0],'c':[0,4,8]}) +---+---+---+ | a | b | c | +---+---+---+ | 1 | 4 | 0 | +---+---+---+ | 2 | 6 | 4 | +-

Solution 1:

Here are two ways, both adapt from @unutbu's answer to "Find names of top-n highest-value columns in each pandas dataframe row"

1) Use Python Decorate-Sort-Undecorate with a .apply(lambda ...) on each row to insert the column names, do the np.argsort, keep the top-n, reformat the answer. (I think this is cleaner).

import numpy as np

# Apply Decorate-Sort row-wise to our df, and slice the top-n columns within each row...

sort_decr2_topn = lambda row, nlargest=2:
    sorted(pd.Series(zip(df.columns, row)), key=lambda cv: -cv[1]) [:nlargest]

tmp = df.apply(sort_decr2_topn, axis=1)

0    [(b, 4), (a, 1)]
1    [(b, 6), (c, 4)]
2    [(c, 8), (a, 1)]

# then your result (as a pandas DataFrame) is...
np.array(tmp)
array([[('b', 4), ('a', 1)],
       [('b', 6), ('c', 4)],
       [('c', 8), ('a', 1)]], dtype=object)
# ... or as a list of rows is
tmp.values.tolist()
#... and you can insert the row-indices 0,1,2 with zip(tmp.index, tmp.values.tolist())
[(0, [('b', 4), ('a', 1), ('c', 0)]), (1, [('b', 6), ('c', 4), ('a', 2)]), (2, [('c', 8), ('a', 1), ('b', 0)])]

2) Get the matrix of topnlocs as follows, then use it both to reindex into df.columns, and df.values, and combine that output:

import numpy as np

nlargest = 2
topnlocs = np.argsort(-df.values, axis=1)[:, 0:nlargest]
# ... now you can use topnlocs to reindex both into df.columns, and df.values, then reformat/combine them somehow# however it's painful trying to apply that NumPy array of indices back to df or df.values,

See How to get away with a multidimensional index in pandas

Post a Comment for "Get Both The Top-n Values And The Names Of Columns They Occur In, Within Each Row In Dataframe"