How To Column_stack A Numpy Array With A Scipy Sparse Matrix?
I have the following matrices: A.toarray() array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0,
Solution 1:
2 issues
- there isn't a
sparse.column_stack
- you are mixing a sparse matrix and dense array
2 smaller examples:
In [129]: A=sparse.csr_matrix([[1,0,0],[0,1,0]])
In [130]: B=np.array([1,2])
Using np.column_stack
gives your error:
In [131]: np.column_stack((A,B))
...
ValueError: all the input array dimensions exceptfor the concatenation axis must match exactly
But if I first turn A
into an array, column_stack does fine:
In [132]: np.column_stack((A.A, B))
Out[132]:
array([[1, 0, 0, 1],
[0, 1, 0, 2]])
the equivalent with concatenate
:
In [133]: np.concatenate((A.A, B[:,None]), axis=1)
Out[133]:
array([[1, 0, 0, 1],
[0, 1, 0, 2]])
there is a sparse.hstack
. For that I need to turn B
into a sparse matrix as well. Transpose works because it is now a matrix (as opposed to a 1d array):
In [134]: sparse.hstack((A,sparse.csr_matrix(B).T))
Out[134]:
<2x4 sparse matrix of type'<class 'numpy.int32'>'
with 4 stored elements in COOrdinate format>
In [135]: _.A
Out[135]:
array([[1, 0, 0, 1],
[0, 1, 0, 2]], dtype=int32)
Solution 2:
Did you try the following?
C=np.vstack((A.T,B)).T
With sample values:
A = array([[1, 2, 3], [4, 5, 6]])
>>>> A.shape
(2, 3)
B = array([7, 8])
>>> B.shape
(2,)
C=np.vstack((A.T,B)).T
>>> C.shape
(2, 4)
If A is a sparse matrix, and you want to maintain the output as sparse, you could do:
C=np.vstack((A.A.T,B)).T
D=csr_matrix((C))
Post a Comment for "How To Column_stack A Numpy Array With A Scipy Sparse Matrix?"