Skip to content Skip to sidebar Skip to footer

Image Outline Using Python/pil

I have a color photo of apple, how can I show only its outline (inside white, background black) with python/PIL?

Solution 1:

Something like this should work.

from PIL import Image, ImageFilter

image = Image.open('your_image.png')
image = image.filter(ImageFilter.FIND_EDGES)
image.save('new_name.png') 

If that doesn't give you the result you are looking for then you try implementing either Prewitt edge detection, Sobel edge detection or Canny edge detection using PIL and Python and other libraries see related question and the following example .

If you are trying to do particle detection / analysis rather than just edge detection, you can try using py4ij to call the ImageJ method you link to give you expect the same result, or try another Particle Analysis Python library EMAN alternately you can write a Particle detection algorithm using PIL, SciPy and NumPy.

Solution 2:

If your object and background have fairly well contrast

from PIL import Image
image = Image.open(your_image_file)
mask=image.convert("L")
th=150 # the value has to be adjusted for an image of interest 
mask = mask.point(lambda i: i < th and 255)
mask.save(file_where_to_save_result)

if higher contrast is in one (of 3 colors), you may split the image into bands instead of converting it into grey scale.

if an image or background is fairly complicated, more sophisticated processing will be required

Solution 3:

Apple vs Lines You can do it just using PIL and Python in less than 200 lines of code. Would be easier to use canny-edge-detection from a library. Here is the steps. Convert to grayscale for lumens. Using kernel image processing detect edges using Sobel. Thin the edge using the magnitude and slope obtain from Sobel.

from PIL import Image
import math


defone_to_two_dimension_array(list_,columns):
    #use list slicereturn [ list_[i:i+columns] for i inrange(0, len(list_),columns) ] 

defflatten_matrix(matrix):
    return [val for sublist in matrix for val in sublist]

defmatrix_convole(matrix, kernel_matrix, multiplier):
    return_list=[]
    return_matrix=[]

    border=(len(kernel_matrix) - 1) / 2;border=int(border)
    center_kernel_pos=border
    for matrix_row inrange( len( matrix )):
        for matrix_col inrange(len( matrix[matrix_row] ) ):
            accumulator = 0if (matrix_row - border)<0or \
            (matrix_col-border)< 0or \
            (matrix_row+border) > (len( matrix )-border) or \
            (matrix_col+border) > (len( matrix[matrix_row] )-border):
                return_list.append(matrix[matrix_row][matrix_col])
                continuefor kernel_row inrange(len (kernel_matrix) ):
                for kernel_col inrange(len (kernel_matrix[kernel_row]) ):      

                    relative_row= kernel_row - center_kernel_pos
                    relative_col= kernel_col - center_kernel_pos
                    kernel = kernel_matrix[kernel_row][kernel_col]
                    pixel = matrix [matrix_row + relative_row] [matrix_col + relative_col]
                    accumulator += pixel * kernel
            return_list.append(accumulator* multiplier )
    return_matrix = one_to_two_dimension_array( return_list, len( matrix[0] ) )
    return return_matrix
            
defcanny_round_degree(deg):
    #0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5, 180if deg >= 0and deg <= 22.5:
        return0elif deg >= 22.5and deg <= 67.5:
        return45elif deg > 67.5and deg <=112.5:
        return90elif deg > 112.5and deg <=157.5:
        return135elif deg >= 157.5and deg <= 180:
        return0if deg <= 0and deg >= -22.5:
        return0elif deg <= -22.5and deg >= -67.5:
        return135elif deg < -67.5and deg >= -112.5:
        return90elif deg < -112.5and deg >= -157.5:
        return45elif deg <= -157.5and deg >= -180:
        return0

image_path='apple.jpg'
gaussian_5x5_kernel=[[2,4,5,4,2],[4,9,12,9,4],[5,12,15,12,5],[4,9,12,9,4],[2,4,5,4,2]] #multiplier 1/159
sobel_kernel_gx=[[-1,0,1],[-2,0,2],[-1,0,1]]
sobel_kernel_gy=[[-1,-2,-1],[0,0,0],[1,2,1]] 
im_list=list(Image.open(image_path).convert('L').getdata(0)) #grayscale, get first channel
im_width=Image.open(image_path).width
im_height=Image.open(image_path).height
im_matrix = one_to_two_dimension_array(im_list, im_width)

im_matrix_blur=matrix_convole(im_matrix,gaussian_5x5_kernel, 1/159)

sobel_gx_matrix=matrix_convole(im_matrix_blur,sobel_kernel_gx, 1)
sobel_gy_matrix=matrix_convole(im_matrix_blur,sobel_kernel_gy, 1)

sobel_gy_list=flatten_matrix(sobel_gy_matrix) 
sobel_gx_list=flatten_matrix(sobel_gx_matrix) 

sobel_g_magnitude_list = [math.hypot(gy,gx) for gx,gy inzip(sobel_gx_list,sobel_gy_list)]


sobel_g_angle_list = [ canny_round_degree(math.degrees(math.atan2(gy,gx))) for gx,gy inzip(sobel_gx_list,sobel_gy_list)]

sobel_g_angle_matrix = one_to_two_dimension_array(sobel_g_angle_list, im_width)
sobel_g_magnitude_matrix = one_to_two_dimension_array(sobel_g_magnitude_list, im_width)
suppression_list = []
for s_row inrange( len( sobel_g_angle_matrix)):
    for s_col inrange(len( sobel_g_angle_matrix[s_row] ) ):
        if (s_row - 1)<0or \
            (s_col-1)< 0or \
            (s_row+1) > (len( sobel_g_angle_matrix )-1) or \
            (s_col+1) > (len( sobel_g_angle_matrix[s_row] )-1):
            suppression_list.append(0)
            continue
    
        magnitude_in_question = sobel_g_magnitude_matrix[s_row][s_col]
        #thresholding magnitude continue, arbitrary 129if magnitude_in_question < 36:
            suppression_list.append(0)
            continue    

        angle_in_question = sobel_g_angle_matrix[s_row][s_col]

        east_magnitude = sobel_g_magnitude_matrix[s_row][s_col-1]
        west_magnitude = sobel_g_magnitude_matrix[s_row][s_col+1]
        north_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col]
        south_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col]
        north_east_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col-1]
        north_west_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col+1]
        south_east_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col-1]
        south_west_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col+1]       
        if angle_in_question == 0and magnitude_in_question > east_magnitude \
            and magnitude_in_question > west_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 90and magnitude_in_question > north_magnitude \
            and magnitude_in_question > south_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 135and magnitude_in_question > north_west_magnitude \
            and magnitude_in_question > south_east_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 45and magnitude_in_question > north_east_magnitude \
            and magnitude_in_question > south_west_magnitude:
            suppression_list.append(1)  
        else:
            suppression_list.append(0)  
            

new_img = Image.new('1', (im_width,im_height)) #bw=1;grayscale =L
new_img.putdata( suppression_list )
new_img.save('apple-lines.png', 'PNG')

Post a Comment for "Image Outline Using Python/pil"