Transform Pandas Column Of Nested Lists
how do I get a pandas column of nested lists in the form: [['6.65539026 -1.24900830'], ['6.65537977 -1.24882162'], ['6.65537977 -1.24882162'], ['6.65544653 -1.24888170'], ['6.6
Solution 1:
If you've a nested list column like this:
df = pd.DataFrame({'col' : [[['6.65539026 -1.24900830'],
['6.65537977 -1.24882162'],
['6.65537977 -1.24882162'],
['6.65544653 -1.24888170'],
['6.65548515 -1.24828506'],
['6.65574646 -1.24843669'],
['6.65588522 -1.24853671'],
['6.65616179 -1.24875331'],
['6.65600824 -1.24891996'],
['6.65566158 -1.24909663'],
['6.65554523 -1.24906671']]]})
col
0[[6.65539026 -1.24900830], [6.65537977 -1.24882162], [6.65537977 -1.24882162], [6.65544653 -1.24888170], [6.65548515 -1.24828506], [6.65574646 -1.24843669], [6.65588522 -1.24853671], [6.65616179 -1.24875331], [6.65600824 -1.24891996], [6.65566158 -1.24909663], [6.65554523 -1.24906671]]
Then you can try:
k = df.col.explode().str[0].str.split(' ')
df['col'] = k.groupby(k.index).agg(list)
OUTPUT:
col
0[[6.65539026, -1.24900830], [6.65537977, -1.24882162], [6.65537977, -1.24882162], [6.65544653, -1.24888170], [6.65548515, -1.24828506], [6.65574646, -1.24843669], [6.65588522, -1.24853671], [6.65616179, -1.24875331], [6.65600824, -1.24891996], [6.65566158, -1.24909663], [6.65554523, -1.24906671]]
Post a Comment for "Transform Pandas Column Of Nested Lists"