Is There A Faster Way To Add Two 2-d Numpy Array
Solution 1:
Approach #1 (Vectorized)
We can use modulus
to simulate the circulating behavior of roll/circshift
and with broadcasted indices to cover all rows, we would have a fully vectorized approach, like so -
n = b.shape[0]
idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n)
a += b[idx].sum(0)
Approach #2 (Loopy one)
b_ext = np.row_stack((b, b[:-1] ))
start_idx = n-1 - np.mod(shift.cumsum()-1,n)
for j in range(start_idx.size):
a += b_ext[start_idx[j]:start_idx[j]+n]
Colon notation vs using indices for slicing
The idea here to do minimal work once we are inside the loop. We are pre-computing the start row index of each iteration before going into the loop. So, all we need to do once inside the loop is slicing using colon notation, which is a view into the array and adding up. This should be much better than rolling
that needs to compute all of those row indices that results in a copy that is expensive.
Here's a bit more into the view and copy concepts when slicing with colon and indices -
In [11]: a = np.random.randint(0,9,(10))
In [12]: a
Out[12]: array([8, 0, 1, 7, 5, 0, 6, 1, 7, 0])
In [13]: a[3:8]
Out[13]: array([7, 5, 0, 6, 1])
In [14]: a[[3,4,5,6,7]]
Out[14]: array([7, 5, 0, 6, 1])
In [15]: np.may_share_memory(a, a[3:8])
Out[15]: True
In [16]: np.may_share_memory(a, a[[3,4,5,6,7]])
Out[16]: False
Runtime test
Function defintions -
def original_loopy_app(a,b):
for j in range(shift.size):
b=np.roll(b, shift[j] , axis=0)
a += b
def vectorized_app(a,b):
n = b.shape[0]
idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n)
a += b[idx].sum(0)
def modified_loopy_app(a,b):
n = b.shape[0]
b_ext = np.row_stack((b, b[:-1] ))
start_idx = n-1 - np.mod(shift.cumsum()-1,n)
for j in range(start_idx.size):
a += b_ext[start_idx[j]:start_idx[j]+n]
Case #1:
In [5]: # Setup input arrays
...: N = 200
...: M = 1000
...: a = np.random.randint(11,99,(N,N))
...: b = np.random.randint(11,99,(N,N))
...: shift = np.random.randint(0,N,M)
...:
In [6]: original_loopy_app(a1,b1)
...: vectorized_app(a2,b2)
...: modified_loopy_app(a3,b3)
...:
In [7]: np.allclose(a1, a2) # Verify results
Out[7]: True
In [8]: np.allclose(a1, a3) # Verify results
Out[8]: True
In [9]: %timeit original_loopy_app(a1,b1)
...: %timeit vectorized_app(a2,b2)
...: %timeit modified_loopy_app(a3,b3)
...:
10 loops, best of 3: 107 ms per loop
10 loops, best of 3: 137 ms per loop
10 loops, best of 3: 48.2 ms per loop
Case #2:
In [13]: # Setup input arrays (datasets are exactly 1/10th of original sizes)
...: N = 200
...: M = 10000
...: a = np.random.randint(11,99,(N,N))
...: b = np.random.randint(11,99,(N,N))
...: shift = np.random.randint(0,N,M)
...:
In [14]: %timeit original_loopy_app(a1,b1)
...: %timeit modified_loopy_app(a3,b3)
...:
1 loops, best of 3: 1.11 s per loop
1 loops, best of 3: 481 ms per loop
So, we are looking at 2x+
speedup there with the modified loopy approach!
Post a Comment for "Is There A Faster Way To Add Two 2-d Numpy Array"